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CHAPTER

ONE

GETTING STARTED

1.1 1. Introduction to MRS processing with Suspect

Welcome to the first in our series of tutorials in how to use Suspect for working with MR spectroscopy data. In this
introduction, we will present some of the basic features of Suspect while in subsequent tutorials we will explore various
parts of the processing pipeline in more detail.

The first thing is to import the suspect package. We will also import the pyplot module from Matplotlib, which we
will use for plotting our data, and we use some Jupyter “magic” to cause all plots to be rendered inline with the text in
the notebook.

[ ]: import suspect
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline

Let’s get started by loading some MRS data. Suspect currently supports various different data formats including
Siemens DICOM, RDA and TWIX and Philips SDAT. GE P files are not yet supported but should be soon. The
Suspect repository on Github contains a number of example data files and we will be using those throughout this tuto-
rial series, so you can follow along if you like. If you are using the OpenMRSLab Docker image (which we use to write
all these tutorials) then you will find this sample data in the folder at /home/jovyan/suspect/tests/test_data/.
We are going to start with an RDA file for a short echo time single voxel PRESS sequence.

[2]: data = suspect.io.load_rda("/home/jovyan/suspect/tests/test_data/siemens/SVS_30.rda")
print(data)

<MRSData instance f0=123.234655MHz TE=30.0ms dt=0.833ms>

When we print the data object we just loaded we see that it is an instance of the MRSData class, and we also get some
other information about the acquisition sequence such as the field strength and echo time. The MRSData class stores
time domain spectroscopy data and is at the core of the Suspect package. It is a subclass of numpy.ndarray which
means it has all the standard properties, as well as additional MRS specific ones. To learn more about the MRSData
class and all its functions and properties, check out the MRSData API Reference

[3]: print(data.shape)
print(data.f0)
print(data.dt)
print(data.sw)

(1024,)
123.234655
0.000833
1200.4801920768307
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Now that we have some data loaded, we want to plot it to see what it looks like. As an ndarray subclass, MRSData is
fully compatible with the standard Matplotlib plotting library so displaying our FID is as simple as:

[4]: plt.plot(data.time_axis(), data.real)

[4]: [<matplotlib.lines.Line2D at 0x7febc9372320>]

Note that the MRSData object has a time_axis()method which gives us the time at which each FID point was acquired.
There are similar methods in the frequency domain to give us the axis in Hz or PPM. To obtain the spectrum from the
FID we can apply the Fourier transform directly, or just use the helper spectrum() method provided by MRSData.

[5]: plt.plot(data.frequency_axis_ppm(), data.spectrum().real)
# reverse the limits on the x-axis so that ppm runs from right to left
plt.xlim([10, -1])

[5]: (10, -1)
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Looking back at the time domain plot we can see that there is a spurious signal which appears at the end of the acquisition
window. This kind of artefact can distort the spectrum and cause problems in subsequent processing. For example the
end of the FID is often considered to be pure noise, which is used in assessing SNR and these false signals can affect
this analysis.

Fortunately we can get rid of this artefact by apodising our data, that is applying a windowing function in the time
domain. The scipy.signal package provides a huge array of different windowing functions, in our case we will be
using the Tukey window as this allows us to leave the first half of the signal completely unaffected and only suppress
the signal close to the artefact region.

[6]: import scipy.signal
# scipy.signal produces symmetric windows so only take the second half
window = scipy.signal.tukey(data.np * 2)[data.np:]
plt.plot(data.time_axis(), window)

[6]: [<matplotlib.lines.Line2D at 0x7febc91a5a20>]

1.1. 1. Introduction to MRS processing with Suspect 5
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Applying the window to our FID data is as simple as multiplying the two objects together. NumPy will multiply the
two arrays componentwise and return the result as a new MRSData object, copying all the parameters from the original
data object, so that the new object keeps all the essential MRS parameters and methods.

[7]: windowed_data = window * data
plt.plot(data.time_axis(), data.real)
plt.plot(windowed_data.time_axis(), windowed_data.real)

[7]: [<matplotlib.lines.Line2D at 0x7febc91b97f0>]
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So that concludes our first look at the Suspect library. We have learnt about the MRSData class, how to load MRS
data from a file and plot it, in the time and frequency domains, and seen a simple example of removing an artefact
through apodisation. In the following tutorials, we will learn how to use Suspect to do more advanced data processing,
including working with raw data, channel combination, B0 drift correction and water suppression.

1.2 2. Channel combination with Siemens twix data

In our previous example, we loaded data from the Siemens RDA format. While this is the default format for exporting
MRS data from the scanner, Siemens also supports exporting the data in the twix format, which contains the true raw
data before any processing is done to it. Working with twix data adds some complexity because we have to implement
all the processing steps for ourselves, but it also gives us a lot more control over the methods we use and can really
improve the final result. In this tutorial we are going to take a look at one of the first steps in the data processing
workflow, channel combination.

As usual we start by importing the packages we will need, suspect of course, numpy for its general mathematical
functionality, and matplotlib for visualising our results along the way. As this is a Jupyter notebook, we also use some
IPython magic to render our plots interactively inside the notebook.

[1]: import suspect
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline

Just as in the previous tutorial we will be using data from the Suspect test data set. In this example we are using data
in the twix VB format; the VD and VE formats are also supported and are generally very similar.

1.2. 2. Channel combination with Siemens twix data 7
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[2]: data = suspect.io.load_twix("/home/jovyan/suspect/tests/test_data/siemens/twix_vb.dat")

If we inspect the shape of the loaded data we find that there are actually 3 dimensions.

[3]: data.shape

[3]: (128, 32, 2048)

• The first dimension is the repetition index. Because of the low SNR in MRS, it is very common to perform the
same acquisition multiple times and average the results. Because the signal is the same for every repetition, but
since the noise varies randomly, overall the SNR improves by the square root of the number of repetitions. The
downside to this is the increased acquisition time due to the extra repetitions. In this case we use 128 repetitions
for an increase in SNR of ~11 times.

• The second dimension is the channel index. For this exam we used a 32 channel head coil.

• The final dimension is the points in the FID.

The first processing step we are going to carry out is to average over the repetitions. Each repetition is produced by
running the exact same sequence so we can simply take the mean along this first axis to get a much less noisy signal.

[4]: repetition_averaged_data = np.mean(data, axis=0)

[5]: plt.plot(np.real(data[0, 0].spectrum()))
plt.plot(np.real(repetition_averaged_data[0].spectrum()))

[5]: [<matplotlib.lines.Line2D at 0x7f09d5b013c8>]

Now that we have averaged all the repetitions, we have a 2D dataset of 32 FIDs, one for each channel of our head coil.
You might expect that we can just average the channels in exactly the same way, after all they are all measuring the
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same signal at the same time. However if we plot all the FIDs together we see it isn’t quite so simple as that.

[6]: for i in range(32):
plt.plot(np.real(repetition_averaged_data[i]))

Although all the channels are indeed measuring the same signal, each coil element is in a different position relative
to the excitation voxel, and pointing in a different direction. This means that each channel measures the signal with a
different sensitivity and phase. This is easier to see if we plot the magnitude of the FIDs, removing the phase component
from the picture.

[7]: for i in range(32):
plt.plot(np.abs(repetition_averaged_data[i]))

1.2. 2. Channel combination with Siemens twix data 9
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From this plot it is much easier to see that the signal from every channel has the same shape, they only differ in scale.
Although in magnitude mode all the channels line up, we need to phase them before we can combine the complex FIDs.

To do this, we are going to use a very powerful technique for working with multi-dimensional MRSData objects,
numpy’s apply_along_axis function. What this does is split our 2D matrix up into the individual FIDs, transform
them according to a custom function, and build the results back up into a 2D matrix again. In this case, we specify a
very simple function which adjusts the phase of the FID to make the first point real.

N.B. in the current version of numpy calling apply_along_axis will return a bare ndarray rather than the MRSData
subclass, thus all the spectroscopy specific information such as f0 and dt is lost. There is a submitted pull-request to
the numpy codebase to fix this issue, in the meantime we can use the MRSData.inherit method to copy values from
the parent MRSData instance.

[8]: def phase_correct(fid):
return fid * np.exp(-1j * np.angle(fid[0]))

phase_corrected_data = np.apply_along_axis(phase_correct, 1, repetition_averaged_data)
# copy the MRS parameters from repetition_averaged_data to phase_corrected_data
phase_corrected_data = repetition_averaged_data.inherit(phase_corrected_data)
for i in range(32):

plt.plot(phase_corrected_data[i].real)
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At this point you might be tempted to apply scaling factors to each FID to make them line up in magnitude as well as
in phase, however that would be a mistake. As you can see from the right hand side of the FIDs, the level of noise is
the same in each one. As the size of the signal is different for every channel, that means that the signal to noise ratio
is also different. Scaling up the smaller signals to match the larger will also introduce a disproportionate amount of
noise into the overall signal. Instead, we should actually scale the data to make the large signals larger and the small
signals smaller, as that will give us the best SNR overall. We can modify our phase correction function to also perform
this scaling, then we average over the phased and scaled channels to get the final answer. If we compare the resulting
spectrum against a simple unweighted average of the phase corrected FIDs, we can see a significant boost in the SNR.

[9]: def phase_correct_and_scale(fid):
return fid * np.exp(-1j * np.angle(fid[0])) * np.abs(fid[0])

scaled_data = repetition_averaged_data.inherit(
np.apply_along_axis(phase_correct_and_scale, 1, repetition_averaged_data)

)
# we need to normalise our scaled data by the mean scaling factor so that
# on average the noise level does not change. this allows an easier
# comparison of SNR by just looking at the two signals.
scaled_data /= np.mean(np.abs(repetition_averaged_data[:, 0]))

# average
channel_combined_data = np.mean(scaled_data, axis=0)
simple_mean = np.mean(phase_corrected_data, axis=0)

plt.plot(channel_combined_data.frequency_axis(), np.real(channel_combined_data.
→˓spectrum().real))
plt.plot(simple_mean.frequency_axis(), simple_mean.spectrum().real)
# plot only the peak region to make differences easier to see

(continues on next page)
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(continued from previous page)

plt.xlim([-100, 600])

[9]: (-100, 600)

So far, we have have been using the first point of each channel FID to calculate both the phase and weighting of each
channel. That works well for this dataset, which has a large residual water peak, but it cannot be relied upon in all cases.
In data with strong water suppression, the SNR will drop significantly, while in some cases ringing from transmitted
RF or gradient coils can corrupt the initial points of the FID and require them to be suppressed.

It is preferable to use a method which can estimate the optimal channel phases and weights using the complete FID
as this maximises the available SNR and gives the most robust result. A good way to achieve this is with the Singular
Value Decomposition (SVD). The SVD factorises a matrix 𝑀 into the product of three matrices 𝑈Σ𝑉 † where 𝑈 and
𝑉 are unitary and Σ is a non-negative real diagonal matrix. In the context of our 32× 1024 channel × FID matrix, we
can interpret 𝑉 † as a set of created FIDs, Σ as the amounts of each FID in the measurement, and 𝑈 as the strength with
which each channel measures each FID.

[10]: u, s, v = np.linalg.svd(repetition_averaged_data, full_matrices=False)

For this kind of single voxel data we know there is only one FID being generated, all the others should just be noise. If
we print out all the singular values of our decomposition, helpfully sorted into descending order by NumPy:

[11]: print(s)

[ 1.95606942e-03 1.68398598e-05 1.10745846e-05 8.04545743e-06
7.00992012e-06 6.73828739e-06 6.21173379e-06 5.97860050e-06
5.80999121e-06 5.41935388e-06 5.12515151e-06 4.92714095e-06
4.80960584e-06 4.63161541e-06 4.50883925e-06 4.33497448e-06
4.12607732e-06 3.98773077e-06 3.91373956e-06 3.77949787e-06

(continues on next page)
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(continued from previous page)

3.64188480e-06 3.62543754e-06 3.49186287e-06 3.37929421e-06
3.24924499e-06 3.18338310e-06 3.09072752e-06 2.96630404e-06
2.84717143e-06 2.79823675e-06 2.69785503e-06 2.57237787e-06]

then we see immediately that the largest singular value is more than 100 times greater than the others, this is the real
FID so if we truncate u, s and v to only the first row, value and column respectively then s x the first column of v gives
us the FID, and the first row of u gives us the optimal weights.

[12]: weights = u[:, 0].conjugate()
# we have to normalise the weights to match the previous weight calculations
weight_normalisation = np.sum(np.abs(weights))
weights /= weight_normalisation
# the FID from the SVD has an arbitrary phase difference from the previous one
phase_shift = np.angle(v[0, 0] / channel_combined_data[0])
svd_fid = np.exp(-1j * phase_shift) * s[0] * v[0] / weight_normalisation
plt.plot(channel_combined_data.real)
plt.plot(svd_fid.real)
# we can also get the fid by multiplying the channel data by the weights
weighted_fids = weights.reshape((32, 1)) * repetition_averaged_data
# average and phase the weighted fids
svd_fid2 = np.exp(-1j * phase_shift) * np.sum(weighted_fids, axis=0)
plt.plot(svd_fid2.real)

[12]: [<matplotlib.lines.Line2D at 0x7f09c9f26f60>]

As you can see, both the FIDs we obtain from the SVD method are identical to the result we obtained previously.
However, because they calculate the channel weights using the entire FID rather than just the first point, they are much
more robust and perform substantially better in cases with lower SNR or corrupted initial points.

1.2. 2. Channel combination with Siemens twix data 13
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So far we have been working entirely with standard numpy functions, and only used Suspect to load the initial data, but
of course it is also possible to use functions from Suspect’s processing.channel_combination module to do the
channel combination more simply.

[13]: # first calculate the weights for each channel using the SVD method
channel_weights = suspect.processing.channel_combination.svd_weighting(repetition_
→˓averaged_data)
# apply the calculated weights to the data
cc_data = suspect.processing.channel_combination.combine_channels(repetition_averaged_
→˓data, channel_weights)
# the result is the same as our original, manually processed FID
plt.plot(cc_data.real)
plt.plot(channel_combined_data.real)

[13]: [<matplotlib.lines.Line2D at 0x7f09c9f72198>]

In the channel_combination module, the channel weights can be calculated using the svd_weighting() function
while the combine_channels() function applies those weights to a set of FIDs. The decision to use two functions
rather than a single function which performs both steps was made to improve the flexibility of the library. By splitting
the functionality it makes it easy to calculate the channel weights in a different way if necessary, or to apply one set
of weights to multiple datasets. For example when an unsuppressed water reference is acquired the weights calculated
using that data can also be applied to the water suppressed data, while taking advantage of the much higher SNR of the
unsuppressed acquisition.

So that concludes our look at channel combination for phased array MRS data. We have learned that the different
channels need to be phase corrected, and that a weighted combination of the signals can significantly improve the
overall SNR. We used the SVD method to calculate both the phase corrections and the optimal weights simultaneously,
and seen how Suspect provides functions to make it easy to apply. Next time, we will look at B0 shifts and how to
correct for them.
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1.3 4. External Quantification Tools

[1]: import suspect
import numpy as np
from matplotlib import pyplot as plt
%matplotlib nbagg

[2]: data = suspect.io.load_rda("/home/jovyan/suspect/tests/test_data/siemens/SVS_30.rda")

1.3.1 LCModel

LCModel requires several different files in order to process a spectrum. The actual MRS data is stored in the time
domain in a .RAW file, with an optional .H20 file containing the water reference data (these are actually the same
format but the extension helps in distinguishing the files). A .CONTROL file is what the LCModel program actually
receives as input, it lists the input and output files, and any parameters which have non-default values. Finally the
metabolite basis set used for fitting the data is contained in a .BASIS file. The .BASIS file is normally provided with
LCModel and unlike the other files does not need to be changed with each new dataset.

Suspect can generate all the files necessary to process data with LCModel using the write_all_files() function
from the suspect.io.lcmodel module. This function takes a path to which to save the .RAW file (any other files
will be saved in the same directory), the MRSData object to be written, and an optional params dictionary to customise
any of the values in the .CONTROL file. This dictionary can contain any of the parameter names from the LCModel
manual. Let’s take a look at an example of how to save our data for LCModel to process.

[3]: # create a parameters dictionary to set the basis set to use
params = {

"FILBAS": "/path/to/lcmodel/basis.BASIS"
}
suspect.io.lcmodel.write_all_files("lcmodel_data/example.RAW", data, params=params)

We can use some IPython magic to show the files that were created:

[4]: !ls lcmodel_data/

example.RAW example_sl0.CONTROL

and to look at the contents of the .CONTROL file:

[5]: !cat lcmodel_data/example_sl0.CONTROL

$LCMODL
OWNER = ''
KEY = 123456789
DELTAT = 0.000833
HZPPPM = 123.234655
NUNFIL = 1024
NDROWS = 1
NDCOLS = 1
FILBAS = '/path/to/lcmodel/basis.BASIS'
NDSLIC = 1
FILPS = 'lcmodel_data/example.PS'
ICOLST = 1
FILRAW = 'lcmodel_data/example.RAW'

(continues on next page)
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(continued from previous page)

IROWEN = 1
ICOLEN = 1
DOWS = F
IROWST = 1
DOECC = F
$END

The .CONTROL file contains all the parameters necessary for LCModel to process the file, including the path we
specified to the correct basis set. Once the .RAW and .CONTROL files are generated, it only remains to run the
LCModel program on the command line, passing in the .CONTROL file like this:

lcmodel < lcmodel_data/example_sl0.CONTROL

If you are running your Suspect code on the same computer as your LCModel installation, so that lcmodel is in your
path, it is trivial to run it from within a Jupyter notebook using IPython magic, or from a script using the subprocess
module. However if you are running Suspect on a different computer, for example using the OpenMRSLab Docker
container, then you will have to transfer the LCModel files to the LCModel computer for processing. This can be
inconvenient because the paths in the generated .CONTROL file can become out of date. In our lab we have solved
this problem by using a shared network drive which is mounted by both machines, then the paths remain consistent
and the lcmodel program can be launched remotely from the Docker container with a simple ssh command. Another
alternative is to use the suspect.io.lcmodel.save_raw() function instead to save only the .RAW file which can
then be loaded by LCMGUI and the other parameters configured there.

By default the control file is set to only generate the standard 1 page .PS output. The other output files can be generated
by setting the appropriate options in the params dictionary. For example, to generate the .CSV file, set the “LCSV”
parameter to True. In this case, Suspect will automatically generate the path for the .CSV in the same folder as the
.RAW and .CONTROL files. To set a custom location to save the .CSV, instead set the parameter “FILCSV” in params.

[6]: # create a parameters dictionary to set the basis set to use
params = {

"FILBAS": "/path/to/lcmodel/basis.BASIS",
"LCSV": True

}
suspect.io.lcmodel.write_all_files("lcmodel_data/example.RAW", data, params=params)

[7]: !cat lcmodel_data/example_sl0.CONTROL

$LCMODL
OWNER = ''
KEY = 123456789
DELTAT = 0.000833
HZPPPM = 123.234655
NUNFIL = 1024
NDROWS = 1
NDCOLS = 1
FILBAS = '/path/to/lcmodel/basis.BASIS'
NDSLIC = 1
FILPS = 'lcmodel_data/example.PS'
ICOLST = 1
FILRAW = 'lcmodel_data/example.RAW'
IROWEN = 1
ICOLEN = 1
LCSV = 11

(continues on next page)
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(continued from previous page)

DOWS = F
IROWST = 1
FILCSV = 'lcmodel_data/example.CSV'
DOECC = F
$END

1.4 5. Water suppression with HSVD

In this tutorial we will take a look at water suppression. Water is present in the body at concentrations thousands of
times higher than any of the metabolites we are interested in, so any spectrum where the water signal is not suppressed
is completely dominated by the water peak centred at 4.7ppm.

The standard way to suppress the water is to use the CHESS (chemical shift selective) technique. This preparation
method uses a frequency selective excitation pulse to excite only the spins in the region of the water peak, followed by a
“crusher” gradient pulse which dephases the excited spins. Once they have lost their phase coherence, these spins will
no longer contribute any signal during the acquisition. In practice, the basic CHESS technique has been superseded
by first WET and now VAPOR, which use a sequence of CHESS style pulses with varying flip angles and delays to
achieve greater tolerance to B1 variation, and generally improved performance.

However, in many cases, this prospective water suppression is insufficient to completely remove the water signal. Re-
gions with poor shim, such as tumour, may have a water peak which partially extends outside the suppression region,
and patient movement can have the same effect. Furthermore, many users choose to reduce the effect of water sup-
pression by allowing a small amount of T1 recovery between the CHESS and the acquisition sequence. This approach,
often referred to as “weak” water suppression, gives a large residual water peak which is useful during processing, for
calculating channel weights and correcting frequency shifts. This peak must then be removed in a further processing
step.

The methods available for removing the residual water peak generally involve some form of bandpass filter which
removes the signal from a particular region of the spectrum. For this tutorial we are going to focus on the most widely
used technique, HSVD (Hankel Singular Value Decomposition).

As usual, we start by importing our dependencies:

[1]: import suspect
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

For this tutorial, we will be using the SVS_30.rda data included in the Suspect test data collection, so that we don’t
have to worry about channel combination or frequency correction here. However, we will repeat the apodisation step
described in Tutorial 1.

[2]: data = suspect.io.load_rda("/home/jovyan/suspect/tests/test_data/siemens/SVS_30.rda")

import scipy.signal
window = scipy.signal.tukey(data.np * 2)[data.np:]
data = window * data

If we plot the raw spectrum we immediately see that the water peak completely dominates all the other peaks in the
spectrum:

[3]: plt.plot(data.spectrum().real)

1.4. 5. Water suppression with HSVD 17
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[3]: [<matplotlib.lines.Line2D at 0x7fbeb58a1c88>]

HSVD works by approximating the FID with a set of exponentially decaying components:

[4]: components = suspect.processing.water_suppression.hsvd(data, 20)

The second argument to the function is the number of components to generate. This will depend on both the number
of peaks in the spectrum and how Lorentzian they are. Too few components will not be able to correctly describe the
signal but too many can lead to over-fitting. Around 20 is typically a good number for most cases, but do experiment
with your own data to understand better exactly what is going on.

The hsvd() function returns a list of dicts, with each dict containing information about one exponential compo-
nent:

[5]: print(components[0])

{'phase': -2.3526332899894427, 'amplitude': 137.25589213068457, 'fwhm': 0.
→˓93358884978978407, 'frequency': 598.57586504857886}

This components list can be turned back into an FID using the construct_fid() function, which takes a list of
components to be used and a reference time axis. In this example we also set the resulting FID to inherit() all the
MRS properties from the original data object.

[6]: hsvd_fid = suspect.processing.water_suppression.construct_fid(components, data.time_
→˓axis())
hsvd_fid = data.inherit(hsvd_fid)
# plot two axes, one of the whole spectrum and one focussing on the metabolite region
f, (ax1, ax2) = plt.subplots(2)
ax2.set_xlim([550, 850])
ax2.set_ylim([0, 2e5])
for ax in (ax1, ax2):

(continues on next page)
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(continued from previous page)

ax.plot(data.spectrum().real)
ax.plot(hsvd_fid.spectrum().real)

Overall we see that the hsvd_fid is a very good approximation to the original data signal, although some of the
smaller peaks such as the Glx region are not fitted. To get a better idea of what is going on, we can reconstruct each
component individually and plot the whole set together.

[7]: # plot two axes, one of the whole dataset and one of the metabolite region
f, (ax1, ax2) = plt.subplots(2)
ax2.set_xlim([550, 850])
ax2.set_ylim([-1e5, 5e5])
for component in components:

component_fid = suspect.processing.water_suppression.construct_fid([component], data.
→˓time_axis())

component_fid = data.inherit(component_fid)
ax1.plot(component_fid.spectrum().real)
ax2.plot(component_fid.spectrum().real)

1.4. 5. Water suppression with HSVD 19
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What we find is that the major metabolite peaks each have one component associated with them, while the water peak
has several. This is because it is not a perfect Lorentzian - to adequately describe the peak shape requires a series of
progressively smaller correction terms to modify the main peak. Typically only the water peak gets multiple components
as the others are too small, and the total number of components is limited.

The next step is to separate out the components making up the water signal from the metabolite components, which we
do using a frequency cut-off. We can do this rather neatly using a Python list comprehension:

[8]: water_components = [component for component in components if component["frequency"] < 70␣
→˓or component["fwhm"] > 100]

In this case we have selected all the components with frequencies below 80Hz. The best value for this cut-off frequency
will depend strongly on your data, and of course on the field strength of the magnet, but 80Hz is a reasonable starting
point for most people at 3T. For our data we don’t have any peaks downfield of water so we don’t need a negative
frequency cut-off.

In addition we have selected a second set of components, this time with a FWHM greater than 100Hz. These very
broad components are part of the baseline and it can be helpful to remove these at the same time.

Once we have selected the components we want to remove, we can simply subtract the constructed FIDs from our
original data to arrive at the water suppressed spectrum.

[9]: water_fid = suspect.processing.water_suppression.construct_fid(water_components, data.
→˓time_axis())
water_fid = data.inherit(water_fid)
dry_fid = data - water_fid
# plot two axes, one of the whole spectrum and one focussing on the metabolite region
f, (ax1, ax2) = plt.subplots(2)
ax2.set_xlim([550, 850])
ax2.set_ylim([-1e5, 2e5])
for ax in (ax1, ax2):

(continues on next page)
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ax.plot(data.spectrum().real)
ax.plot(water_fid.spectrum().real)
ax.plot(dry_fid.spectrum().real)

The water_fid accurately matches the residual water peak and the broad baseline, but does not include any of the
metabolite peaks. Subtracting this from our data leaves a “dry” spectrum, without any remaining water contamination,
ready for the next stage in the processing pipeline.

1.5 6. Image co-registration

One of the most important steps in MRS processing is visualising the spectroscopy region on a structural image. This not
only allows us to validate that the voxel was correctly placed and assess any partial volume effects, but can also be used to
estimate the mean T2 of the voxel from the gray and white matter content (for brain spectroscopy). Quantification tools
use the T2 to correct for signal relaxation and adjust the metabolite concentrations, but by default they use a generic
value. By calculating your own from the voxel location, you can get more accurate concentrations. Co-registration
is also particularly important for spectroscopic imaging, for example when generating heatmap overlays on top of
structural images.

In this tutorial, we will look at how to relate the coordinate systems of the scanner, the image and the spectroscopy
together, and how to plot a simple voxel outline on top of an image slice. In later tutorials, we will see how to use this
for T2 estimation, and look at more advanced renderings for CSI data.

[1]: import suspect
import numpy as np
import matplotlib.pyplot as plt

Loading structural MR images is handled by the suspect.image module. Currently, suspect only supports working
with DICOM files, although support for NIFTI and other formats is planned for the future. The load_dicom_volume()
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function finds all the DICOM files in the directory of the specified file which have the same SeriesUID, and loads them
all into a single 3D volume of the ImageBase class.

[2]: t1 = suspect.image.load_dicom_volume("mprage/IM-0001-0001.IMA")

Like the MRSData class, the ImageBase class is a numpy.ndarray subclass with a few extra helper functions. This
makes it very easy to display image slices using matplotlib’s imshow() function.

[3]: plt.imshow(t1[100], cmap=plt.cm.gray)

[3]: <matplotlib.image.AxesImage at 0x7fb1c3d10390>

For this tutorial, the two most important functions we are going to look at are to_scanner() and from_scanner().
These functions are used to convert between the voxel coordinate system of the image, and the intrinsic coordinates of
the scanner. For example, we can take the bottom left hand voxel of the image: (0, 0, 0) and see where that is located
inside the scanner.

[4]: origin_position = t1.to_scanner(0, 0, 0)
print(origin_position)

[ -99.75786927 -130.17917679 -103.61138058]

origin_position gives us the location of the (0, 0, 0) voxel relative to the scanner isocenter, in mm, using the standard
scanner coordinates, with x increasing from right to left, y increasing from anterior to posterior and z increasing from
inferior to superior.

On the other hand, we can also work out which voxel is closest to isocenter using the from_scanner() function.

[5]: isocenter_voxel = t1.from_scanner(0, 0, 0)
print(isocenter_voxel)

[ 99.75786924 130.17917681 103.61138058]

Note that we don’t get integer values for the voxel coordinates, this is important when we want to chain coordinate
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systems together later on. However, if we want to slice into our volume we can convert them to integers (making sure
to round first so that e.g. 99.75 goes to 100 and not 99):

[6]: isocenter_indices = isocenter_voxel.round().astype(int)
print(isocenter_indices)

[100 130 104]

A quick word here about ImageBase coordinates. Conceptually suspect loads the DICOM volume as a stack of slices
which means that voxels are indexed as volume[slice, row, column]. This is done to make it easier to plot the
images with matplotlib where the outer dimension is the vertical. However, the to_scanner() and from_scanner()
functions both stick to the standard order of x, y, z, or column, row, slice. Therefore when accessing a particular slice
of an image, the coordinates must be reversed. This is confusing but better than any of the alternatives so far proposed.

Now that we have seen how to load an image and understand its coordinate systems, it is time to look at the spec-
troscopy side. Fortunately, MRSData is a subclass of ImageBase, so the spectroscopy object has exactly the same
to_scanner() and from_scanner() methods available. In this example, we will be using a voxel acquired from the
posterior cingulate gyrus, in the rda format.

[7]: pcg = suspect.io.load_rda("pcg.rda")

pcg_centre = pcg.to_scanner(0, 0, 0)
print(pcg_centre)

[ -2.542373 43.220339 21.186441]

As we can see, this voxel is located slightly behind and above the isocenter position. Now that we know the location
of the centre of the voxel in scanner coordinates, we can convert that into the image space to tell us which slice goes
through the middle of the voxel.

[8]: pcg_centre_index = t1.from_scanner(*pcg_centre).round().astype(int)
print(pcg_centre_index)

[ 97 173 125]

This tells us that slice 125 goes through the centre of the voxel. In this case the voxel is aligned with the plane of the
image, so we don’t have to worry about drawing all the sides. Instead we will draw the transverse slice through the
middle of the voxel, as shown in this diagram.
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[9]: corner_coords_pcg = [[-0.5, -0.5, 0],
[0.5, -0.5, 0],
[0.5, 0.5, 0],
[-0.5, 0.5, 0],
[-0.5, -0.5, 0]]

corner_coords = np.array([t1.from_scanner(*pcg.to_scanner(*coord)) for coord in corner_
→˓coords_pcg])

We start with the list of points in the spectroscopy voxel coordinates. Note that we have added a second copy of the
first point at the end to make it easier to plot a loop. We then use a list comprehension to convert each point first into
the scanner coordinates and then into the image space. Finally we convert the list of coordinates into a numpy array to
make it easier to access the data from matplotlib.

Now we are ready to plot the voxel. We start by displaying the correct image slice with imshow(), then pass the x and
y coordinates of the voxel to plot(). As a final touch, we use the xlim() and ylim() functions to restrict the axes
only to the image range, otherwise matplotlib will pad the image with blank space.

[10]: plt.imshow(t1[pcg_centre_index[2]], cmap=plt.cm.gray)
plt.plot(corner_coords[:, 0], corner_coords[:, 1])
plt.xlim([0, t1.shape[2] - 1])
plt.ylim([t1.shape[1] - 1, 0])

[10]: (255, 0)
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And that is really all there is to it. Now that we know how to convert spectroscopy points into image space, it is very
easy to get the voxel on coronal or sagittal images as well. We just have to change the points on the spectroscopy
voxel and take a different slice through the image volume. The one important thing to remember is that for sagittal and
coronal images the vertical axis is z, which increases from inferior to superior, unlike the default in matplotlib where
images are plotted downwards. This means we have to use ylim() to reverse the direction of plotting, to get our images
the right way up.

[11]: sagittal_voxel = [[0, -0.5, -0.5], [0, 0.5, -0.5], [0, 0.5, 0.5], [0, -0.5, 0.5], [0, -0.
→˓5, -0.5]]
sagittal_positions = np.array([t1.from_scanner(*pcg.to_scanner(*coord)) for coord in␣
→˓sagittal_voxel])
plt.imshow(t1[:, :, pcg_centre_index[0]], cmap=plt.cm.gray)
plt.plot(sagittal_positions[:, 1], sagittal_positions[:, 2])
plt.xlim([0, t1.shape[1] - 1])
plt.ylim([0, t1.shape[0] - 1])

[11]: (0, 191)
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CHAPTER

TWO

SOLVING SPECIFIC PROBLEMS

2.1 Co-registering Images

In this guide, we explore how to combine your MRS data with companion anatomical MR images. We create a voxel
mask to identify which voxels of an image fall inside the spectroscopy voxel, and how to visualise the voxel on top of
the image, both as a volume and an outline. We also look at resampling the image to better align with the spectroscopy
voxel.

[1]: import numpy as np
import matplotlib.pyplot as plt
import suspect

Here we load the data, in this case a DICOM image set and a GE P-file. For the DICOM volume we pass a single file
and the containing folder is processed to collect any other files from the same series, these are then collected into a 3D
volume in a suspect.ImageBase class, which provides access to a lot of useful functionality around transforms and
co-registering. In this case the exam is a single voxel PRESS in the hippocampus, which is convenient as it is a double
oblique and very oblong voxel.

[2]: image = suspect.image.load_dicom_volume("00004_MPRAGE/i5881167.MRDC.15.img")
data, wref = suspect.io.load_pfile("P75264.e02941.s00007.7")

We start by constructing a voxel mask, passing in the spectroscopy data which defines the excitation region and an
image volume which defines the coordinate system for the mask. For display purposes in Matplotlib we then create a
“masked” mask using the Numpy MaskedArray class, so that the mask will only be displayed where the mask is true.

[3]: voxel_mask = suspect.image.create_mask(data, image)
masked_mask = np.ma.masked_where(voxel_mask == False, voxel_mask)

To draw the voxel outline we must define a set of vertices defining a path which will trace all the edges of the voxel.
The list below is the most efficient ordering I can come up with, but feel free to raise an issue on GitHub if you can
think of a better one. I am planning to bring this inside Suspect as a property of the MRSBase class so that it is readily
available. Note that because this is in the MRS coordinates, the corners of the voxel are universal, irrespective of the
size and shape of the voxel.

[4]: corner_coords_voxel = [[-0.5, -0.5, -0.5],
[0.5, -0.5, -0.5],
[0.5, 0.5, -0.5],
[-0.5, 0.5, -0.5],
[-0.5, -0.5, -0.5],
[-0.5, -0.5, 0.5],
[0.5, -0.5, 0.5],

(continues on next page)
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[0.5, -0.5, -0.5],
[0.5, -0.5, 0.5],
[0.5, 0.5, 0.5],
[0.5, 0.5, -0.5],
[0.5, 0.5, 0.5],
[-0.5, 0.5, 0.5],
[-0.5, 0.5, -0.5],
[-0.5, 0.5, 0.5],
[-0.5, -0.5, 0.5]]

Here we transform the coordinate system into the coordinates of the image volume. First we use the to_scanner()
method of the MRS data to move the locations of the voxel corners into the scanner space, then use image.
from_scanner() to bring them into the coordinates of the image volume, which are the voxel indices.

[5]: corner_coords = np.array([image.from_scanner(*data.to_scanner(*coord)) for coord in␣
→˓corner_coords_voxel])

The final bit of preparation we are doing here is to calculate where the centre of the MRS voxel is located in the image
volume so we know which slice (in each plane) we need to render at the centre of the voxel. Note that coordinates are a
bit tricky here - data is organised on the scanner with slices as the outer loop, then columns and then rows, conceptually
that means that the z coordinate is the first index into the array, then y and then x. However all manipulation of
coordinates in transforms assumes the more conventional ordering of (x, y, z). Thus we find that the centre of the voxel
is at slice 58, for example.

[6]: voxel_centre_in_image = image.from_scanner(data.position).round().astype(int)
print(voxel_centre_in_image)

[124 132 58]

Now we are ready to actually render the voxels overlaid with the masks and/or voxel outlines. The anatomical scan
we started with was a sagittal volume, but of course we can easily extract orthogonal slices either axially or coronally,
and in this case the scan is isotropic so we don’t even have to worry about rectangular pixels. We do however need to
transpose the axial and coronal images to display them in the conventional orientation.

In each case we extract the relevant slice from the image volume, then superimpose the same slice from the masked
mask. Finally we plot the line through the corner vertices to show all voxel edges. For the different orientations we
need to extract different pairs from the (x,y,z) triples in the corner_coords array.

[7]: fig, (ax_sag, ax_ax, ax_cor) = plt.subplots(1, 3, figsize=(15, 5))
ax_sag.axis('off')
ax_ax.axis('off')
ax_cor.axis('off')

ax_sag.imshow(image[voxel_centre_in_image[2]], cmap=plt.cm.gray, vmax=1400)
ax_ax.imshow(image[:, voxel_centre_in_image[1]].T, cmap=plt.cm.gray, vmax=1400)
ax_cor.imshow(image[:, :, voxel_centre_in_image[0]].T, cmap=plt.cm.gray, vmax=1400)

ax_sag.imshow(masked_mask[voxel_centre_in_image[2]], cmap=plt.cm.viridis_r, alpha=0.5)
ax_ax.imshow(masked_mask[:, voxel_centre_in_image[1]].T, cmap=plt.cm.viridis_r, alpha=0.
→˓5)
ax_cor.imshow(masked_mask[:, :, voxel_centre_in_image[0]].T, cmap=plt.cm.viridis_r,␣
→˓alpha=0.5)

(continues on next page)
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ax_sag.plot(corner_coords[:, 0], corner_coords[:, 1])
ax_ax.plot(corner_coords[:, 2], corner_coords[:, 0])
ax_cor.plot(corner_coords[:, 2], corner_coords[:, 1])

[7]: [<matplotlib.lines.Line2D at 0x7fb13e6a8a10>]

Because the voxel in this case is double oblique it can be difficult to get a good sense of its orientation from either the
outline or the mask through a single slice. To help with this problem we can use the resample() function to adjust
the orientation of the image so that the image direction vectors align with those of the spectroscopy voxel.

Because the image is sagittal and the spectroscopy voxel is axial, it can be complicated to work out which axes to
choose. Fortunately, the MRSData class provides some helper properties to find the axes which are closest to the
axial/sagittal/coronal directions, so we don’t need to work out whether we want the slice/column/row directions. The
only thing that can trip us up is that the image is acquired with a negative vector in the axial direction, whereas the
spectroscopy voxel has a positive one - we solve this by setting a negative voxel size in that direction.

[8]: res_image = image.resample(data.coronal_vector,
data.axial_vector,
image.shape,
image.centre,
(1, -1, 1),
)

We could also resample the mask but that would introduce partial volume effects, so instead we create a new mask from
the resampled image. We also get the centre of the voxel in this new, resampled image volume.

[9]: mask_res = suspect.image.create_mask(data, res_image)
masked_mask_res = np.ma.masked_where(mask_res == False, mask_res)

voxel_centre_in_res_image = res_image.from_scanner(data.position).round().astype(int)
print(voxel_centre_in_res_image)

[123 133 105]

We now replot the same 3 orthogonal slices as before, but using the resampled image, which puts the spectroscopy
voxel perfectly aligned with the image planes.

[10]: fig, (ax_sag, ax_ax, ax_cor) = plt.subplots(1, 3, figsize=(15, 5))
ax_sag.axis('off')
ax_ax.axis('off')

(continues on next page)
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ax_cor.axis('off')

ax_sag.imshow(res_image[voxel_centre_in_res_image[2]], cmap=plt.cm.gray, vmax=1400)
ax_ax.imshow(res_image[:, voxel_centre_in_res_image[1]].T, cmap=plt.cm.gray, vmax=1400)
ax_cor.imshow(res_image[:, :, voxel_centre_in_res_image[0]].T, cmap=plt.cm.gray,␣
→˓vmax=1400)

ax_sag.imshow(masked_mask_res[voxel_centre_in_res_image[2]], cmap=plt.cm.viridis_r,␣
→˓alpha=0.5)
ax_ax.imshow(masked_mask_res[:, voxel_centre_in_res_image[1]].T, cmap=plt.cm.viridis_r,␣
→˓alpha=0.5)
ax_cor.imshow(masked_mask_res[:, :, voxel_centre_in_res_image[0]].T, cmap=plt.cm.viridis_
→˓r, alpha=0.5)

[10]: <matplotlib.image.AxesImage at 0x7fb13da85650>

We hope you have found this brief exploration of how to combine MRS and MRI data together. If you have questions,
or suggestions on how to improve this guide, please raise an issue on the Suspect GitHub page, or post something in
the MRSHub forum.

Co-registering Images
Learn how to combine anatomical scans with your MRS voxels
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CHAPTER

THREE

THE CONSENSUS PROCESSING PIPELINE

As part of the 2020 NMR in Biomed Special Edition on Spectroscopy, Near et al. wrote a paper giving the consensus
opinion on the post-acquisition processing steps, at least for the single voxel case:

Near, J., Harris, A. D., Juchem, C., Kreis, R., Marjańska, M., Öz, G., et al. (2020). Preprocessing, analysis and quantifi-
cation in single-voxel magnetic resonance spectroscopy: experts’ consensus recommendations. NMR in Biomedicine,
29, 323–23. http://doi.org/10.1002/nbm.4257

This is a highly worthwhile read for any spectroscopist, with excellent detail on almost every component of the process,
with the one notable exception of channel combination.

Of course it is possible to perform all the processing steps from within Suspect, here we provide a Jupyter notebook
with the complete consensus pipeline implemented.

3.1 OpenMRSLab SVS Demo Notebook

This notebook is designed to showcase some of the features provided by OpenMRSLab and the Suspect package for
handling single voxel MRS data.

[1]: import numpy as np
import nipype
from nipype.interfaces import fsl
import suspect
import os

import matplotlib.pyplot as plt

[2]: %matplotlib notebook

In this example we are working with some SVS PRESS data in the Siemens twix format. We have both a standard water
suppressed file and a water reference, and there is also a Nifti file with a T1 MPRAGE image.

[3]: data_file = "meas_MID00062_FID19147_svs_se_30_PCC.dat"
wref_file = "meas_MID00063_FID19148_svs_se_30_PCC_wref.dat"
t1_file = os.path.abspath("t1.nii")

[4]: t1 = suspect.image.load_nifti(t1_file)
data = suspect.io.load_twix(data_file)
wref = suspect.io.load_twix(wref_file)
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Loading the twix data creates objects of the MRSData class. This class has various properties to allow us to probe the
acquisition parameters, and also overrides the Python __repr__() function so that when we just print the data object,
rather than a huge table of numbers we get a short representation with some key parameters included.

[5]: print(data)
print(data.sw)
print(data.metadata)
print(data.shape)

<MRSBase instance f0=123.253243MHz TE=30.0ms dt=0.41670000000000007ms>
2399.808015358771
{'patient_name': 'xxxxxxxxxx', 'patient_id':
→˓'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', 'patient_birthdate': 'xxxxxxxx',
→˓'exam_date': 'xxxxxx', 'exam_time': 'xxxxxx'}
(128, 2, 32, 2048)

As you can see from the shape property above, this dataset has 128 averages, 32 channels and 2048 ADC points in
the FID, but there is an additional axis here with size 2. This is because with the VE software release Siemens uses a
prospective frequency correction method where the excited signal from the WET water suppression pulses is collected
and used to adjust the scanner frequency to correct for any instability in the signal. We don’t want to use that data, so
we extract only the other part of the signal, the part that we really care about.

[6]: data = data[:, 1]
wref = wref[:, 1]

3.1.1 Channel Combination

Because this is multi-channel data, there is likely to be some level of correlation between some of the channels. We
can check this by looking at the pure noise signal at the end of the FIDs. From the covariance matrix below we can
see that there is indeed substantial correlation between various pairs of coils, and also variation in the magnitude of the
signal from different coils.

[7]: noise_points = 256
noise = data[:, :, -noise_points:]
noise = np.moveaxis(noise, -2, 0).reshape((32, -1))
plt.imshow(np.cov(noise).real)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[7]: <matplotlib.image.AxesImage at 0x7fa4c2c11be0>

We can correct for this and “whiten” the noise using the method described in Rodgers, C. T., & Robson, M. D.
(2010). Receive array magnetic resonance spectroscopy: Whitened singular value decomposition (WSVD) gives opti-
mal Bayesian solution. Magnetic Resonance in Medicine, 63(4), 881–891. This creates a set of “virtual channels” as
linear combinations of the real channels, producing zero correlation and equal magnitude of each channel.

[8]: white_data = suspect.processing.channel_combination.whiten(data, noise)
white_wref = suspect.processing.channel_combination.whiten(wref, noise)
noise = white_data[:, :, -noise_points:]
noise = np.moveaxis(noise, -2, 0).reshape((32, -1))
plt.imshow(np.cov(noise).real)

<IPython.core.display.Javascript object>
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<IPython.core.display.HTML object>

[8]: <matplotlib.image.AxesImage at 0x7fa4c2b2a9b0>

We then combine these virtual channels using the SVD weighting method proposed in the same paper. In this case
we take the weightings for both datasets from the water reference signal for consistency, as the water reference has a
greater overall SNR.

[9]: channel_weights = suspect.processing.channel_combination.svd_weighting(np.mean(white_
→˓wref, axis=0))
cc_data = suspect.processing.channel_combination.combine_channels(white_data, channel_
→˓weights)
cc_wref = suspect.processing.channel_combination.combine_channels(white_wref, channel_
→˓weights)

3.1.2 Frequency Drift Correction

Now it is time to check for frequency drift. In this demonstration we use a visualisation method borrowed from GAN-
NET where we show the sequence of spectra as a heatmap. We can easily convert from a time domain FID representation
of the data to spectra using the spectrum() method of the MRSData class. We then use the slice_ppm() method to
index into the spectra in the range of frequencies we are interested in.

[10]: spectra = cc_data.spectrum()
frequency_slice = spectra.slice_ppm(3.5, 1.9)
plt.imshow(spectra[:, frequency_slice].T.real, extent=[0, 128, 1.9, 3.5], aspect='auto')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[10]: <matplotlib.image.AxesImage at 0x7fa4c2aa3518>

Despite the prospective frequency correction, a fairly pronounced drift in frequency is still visible over the 128 averages,
this adds up to about 3Hz first spectrum to last. We can correct for that using Jamie Near’s time domain Spectral
Registration method. We use the first average in the list as the target and iterate over all averages, correcting them to
maximum alignment with that target. Note that alternative methods such as Martin Wilson’s RATS are also available.
We also take the opportunity to make the same correction to the water reference data, although the drift in that case is
likely minimal due to the reduced number of averages. Plotting the heatmap on the aligned data we can see that the
drift is removed very effectively.

[11]: sr_data = suspect.processing.frequency_correction.correct_frequency_and_phase(cc_data,␣
→˓cc_data[0], method="sr")
sr_wref = suspect.processing.frequency_correction.correct_frequency_and_phase(cc_wref,␣
→˓cc_wref[0], method="sr")

[12]: sr_spectra = sr_data.spectrum()
frequency_slice = sr_spectra.slice_ppm(3.5, 1.9)
plt.imshow(sr_spectra[:, frequency_slice].T.real, extent=[0, 128, 1.9, 3.5], aspect='auto
→˓')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>
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[12]: <matplotlib.image.AxesImage at 0x7fa4c228ee80>

With the frequency drift corrected, we can now combine the averages using a simple mean() function.

[13]: ave_data = np.mean(sr_data, axis=0)
ave_wref = np.mean(sr_wref, axis=0)

3.1.3 Eddy Current Correction

The next step to consider is eddy current correction, which we analyse in the water reference data. We can very easily
get the eddy current effect using standard NumPy functions.

[14]: plt.plot(np.unwrap(np.angle(ave_wref)))

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[14]: [<matplotlib.lines.Line2D at 0x7fa4c21f7ba8>]

In this case we do see substantial eddy current effects, so we will calculate a correction term. Here we use a denoising
function from Suspect to smooth out the curve, although we can’t really do anything at the end of the acquisition window
where the signal is pure noise, it doesn’t matter what we do to the signal there anyway. Replotting the corrected water
reference phase evolution shows no discernable eddy current effects.

[15]: eddy_current = np.unwrap(np.angle(ave_wref))
ec_smooth = suspect.processing.denoising.sliding_gaussian(eddy_current, 32)
ecc = np.exp(-1j * ec_smooth)

[16]: ec_data = ave_data * ecc
ec_wref = ave_wref * ecc
plt.plot(np.unwrap(np.angle(ec_wref)))

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[16]: [<matplotlib.lines.Line2D at 0x7fa4c21daa58>]

It is finally time to plot our spectrum. Again we make use of a helper method of the MRSData class to generate a
frequency axis in ppm to match our spectral data.

[17]: plt.plot(ec_data.frequency_axis_ppm(), ec_data.spectrum().real)
plt.xlim([5, 0])

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[17]: (5, 0)
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3.1.4 Residual Water Removal

Oops! There is still a lot of residual water left in the signal, much bigger than the metabolite peaks. We could leave this
to Tarquin to take out, but why not do it ourselves? We use the HSVD method to decompose the FID into exponential
decay signals, then we select all those signals with a frequency below 60 Hz from centre, assuming those to be only
parts of the water peak. We construct a new FID from those components which represents the pure residual water
signal.

[18]: components = suspect.processing.water_suppression.hsvd(ec_data, 30)
water_components = [component for component in components if component["frequency"] < 60]
water_fid = ec_data.inherit(suspect.processing.water_suppression.construct_fid(water_
→˓components, ec_data.time_axis()))
plt.plot(ec_data.frequency_axis_ppm(), ec_data.spectrum().real)
plt.plot(water_fid.frequency_axis_ppm(), water_fid.spectrum().real)
plt.xlim([5, 0])

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[18]: (5, 0)

Now we can subtract out that water signal and at last plot our final spectrum.

[19]: dry_data = ec_data - water_fid
plt.plot(dry_data.frequency_axis_ppm(), dry_data.spectrum().real)
plt.xlim(5, 0)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[19]: (5, 0)

3.1.5 Absolute Quantification

Now before doing a fitting step, we need to make some calculations to get parameters to allow us to do absolute
quantification. We define a little function using NiPype, which allows us to run FSL routines from Python, in this case
to run the BET and FAST programs to remove the brain from our T1 image and classify it into grey matter, white matter
and CSF.

[20]: def classify_tissues(t1_file):
"""
Given a NIFTI file containing a T1 head image, run the FSL tools BET and FAST
to extract the brain and classify it into white matter, grey matter and CSF
labels, then return 3 image volumes with the voxelwise probabilities of
membership of each label.
"""
workflow = nipype.Workflow(name="classify_tissues")
bet = nipype.Node(fsl.BET(frac=0.5,

robust=True),
name="bet")

fast = nipype.Node(fsl.FAST(output_type="NIFTI",
number_classes=3),

name="fast")
(continues on next page)
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(continued from previous page)

workflow.connect([(bet, fast, [("out_file", "in_files")])])
bet.inputs.in_file = os.path.abspath(t1_file)
result = workflow.run()
for node in result.nodes():

if node.name == "fast":
wm = suspect.image.load_nifti(node.result.outputs.partial_volume_files[2])
gm = suspect.image.load_nifti(node.result.outputs.partial_volume_files[1])
csf = suspect.image.load_nifti(node.result.outputs.partial_volume_files[0])

return wm, gm, csf

[21]: wm, gm, csf = classify_tissues(t1_file)

211201-10:40:01,743 workflow INFO:
Workflow classify_tissues settings: ['check', 'execution', 'logging',

→˓'monitoring']
211201-10:40:01,804 workflow INFO:

Running serially.
211201-10:40:01,807 workflow INFO:

[Node] Setting-up "classify_tissues.bet" in "/tmp/tmpgf55rwe_/classify_tissues/
→˓bet".
211201-10:40:01,819 workflow INFO:

[Node] Running "bet" ("nipype.interfaces.fsl.preprocess.BET"), a CommandLine␣
→˓Interface with command:
bet /home/jovyan/work/consensus/t1.nii /tmp/tmpgf55rwe_/classify_tissues/bet/t1_brain.
→˓nii.gz -f 0.50 -R
211201-10:40:18,615 workflow INFO:

[Node] Finished "classify_tissues.bet".
211201-10:40:18,619 workflow INFO:

[Node] Setting-up "classify_tissues.fast" in "/tmp/tmpx4elpz4z/classify_tissues/
→˓fast".
211201-10:40:18,636 workflow INFO:

[Node] Running "fast" ("nipype.interfaces.fsl.preprocess.FAST"), a CommandLine␣
→˓Interface with command:
fast -n 3 -S 1 /tmp/tmpx4elpz4z/classify_tissues/fast/t1_brain.nii.gz
211201-10:45:28,83 workflow INFO:

[Node] Finished "classify_tissues.fast".

Now we create a mask of the image voxels which are inside the PRESS box. From our tissue label maps we can work
out the fraction of each tissue type found in the voxel. Luckily the fractions all add up to 1. We then use Suspect to
calculate the molar concentration factor which converts the ratio of metabolite to water peak to a metabolite molar
concentration.

[22]: voxel_mask = suspect.image.create_mask(data, t1)

[23]: voxel_volume = np.sum(voxel_mask)
f_wm = np.sum(wm * voxel_mask) / voxel_volume
f_gm = np.sum(gm * voxel_mask) / voxel_volume
f_csf = np.sum(csf * voxel_mask) / voxel_volume

[24]: print(f_csf + f_wm + f_gm)

1.0000000001455192
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[25]: aq_factor = suspect.fitting.molar_concentration_factor(f_wm, f_gm, f_csf, data.te, data.
→˓tr)
print(aq_factor)

34573.68835797036

3.1.6 Fitting

We can now pass the data, water reference and absolute quantification factor into the Tarquin fitting program, which will
then return the fitting results back to us. We get Tarquin’s processed version of the data, its fit and baseline estimates,
as well as lines for each metabolite in the basis set.

[26]: fit = suspect.fitting.tarquin.process(dry_data, ec_wref, aq_factor=aq_factor)

[27]: plt.plot(fit["plots"]["data"].frequency_axis_ppm(), fit["plots"]["data"].real)
plt.plot(fit["plots"]["data"].frequency_axis_ppm(), fit["plots"]["fit"].real + fit["plots
→˓"]["baseline"].real)
plt.plot(fit["plots"]["data"].frequency_axis_ppm(), fit["plots"]["metabolites"]["NAA"].
→˓real - 25)
plt.plot(fit["plots"]["data"].frequency_axis_ppm(), fit["plots"]["metabolites"]["Cr"].
→˓real + fit["plots"]["metabolites"]["PCr"].real - 50)
plt.plot(fit["plots"]["data"].frequency_axis_ppm(), fit["plots"]["metabolites"]["GPC"].
→˓real - 75)
plt.xlim([5, 0.0])

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[27]: (5, 0.0)

Of course, we also get the numerical information about the metabolite concentrations and standard deviations, and we
also get the fit quality information provided by Tarquin.

[28]: fit["metabolite_fits"]

[28]: {'-CrCH2': {'concentration': '0.000', 'sd': 'inf'},
'Ala': {'concentration': '0.000', 'sd': 'inf'},
'Asp': {'concentration': '5.730', 'sd': '8.240'},
'Cr': {'concentration': '6.358', 'sd': '3.897'},
'GABA': {'concentration': '2.366', 'sd': '21.69'},
'GPC': {'concentration': '1.765', 'sd': '3.229'},
'Glc': {'concentration': '0.5625', 'sd': '35.49'},
'Gln': {'concentration': '0.000', 'sd': 'inf'},
'Glth': {'concentration': '2.740', 'sd': '6.444'},
'Glu': {'concentration': '11.38', 'sd': '3.326'},
'Ins': {'concentration': '6.880', 'sd': '2.097'},
'Lac': {'concentration': '0.2857', 'sd': '37.89'},
'Lip09': {'concentration': '1.918', 'sd': '58.48'},
'Lip13a': {'concentration': '5.336', 'sd': '225.0'},
'Lip13b': {'concentration': '0.000', 'sd': 'inf'},
'Lip20': {'concentration': '6.858', 'sd': '19.72'},
'MM09': {'concentration': '6.182', 'sd': '20.49'},
'MM12': {'concentration': '2.004', 'sd': '293.0'},

(continues on next page)
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'MM14': {'concentration': '3.214', 'sd': '562.0'},
'MM17': {'concentration': '3.322', 'sd': '220.2'},
'MM20': {'concentration': '11.08', 'sd': '14.96'},
'NAA': {'concentration': '10.36', 'sd': '2.432'},
'NAAG': {'concentration': '1.819', 'sd': '21.47'},
'PCh': {'concentration': '0.000', 'sd': 'inf'},
'PCr': {'concentration': '3.199', 'sd': '6.584'},
'Scyllo': {'concentration': '0.2962', 'sd': '10.38'},
'Tau': {'concentration': '2.868', 'sd': '9.566'},
'TNAA': {'concentration': '12.18', 'sd': '1.534'},
'TCho': {'concentration': '1.765', 'sd': '1.311'},
'TCr': {'concentration': '9.557', 'sd': '0.9290'},
'Glx': {'concentration': '11.38', 'sd': '3.144'},
'TLM09': {'concentration': '8.100', 'sd': '7.178'},
'TLM13': {'concentration': '10.55', 'sd': '19.81'},
'TLM20': {'concentration': '17.94', 'sd': '8.427'}}

[29]: print(fit["quality"])

{'Metab FWHM (PPM)': 0.02614, 'Metab FWHM (Hz)': 3.222, 'SNR residual': 49.81, 'SNR max':
→˓ 171.3, 'Q': 3.439}

3.1.7 Voxel Plotting

As a final demonstration, we render the PRESS box on top of the anatomical image. Both MRS and MRI objects have
affine transforms relating their internal grids to the scanner coordinate system, so we can easily convert the position
property of data (the centre of the PRESS box) into a voxel of the T1 image, telling us which slice passes through
the centre of the MRS voxel. We then define a square of coordinates around the edges of the MRS voxel which are
converted first from MRS to scanner coordinates, then into T1 coordinates, where they are then ready for plotting on
the displayed image.

[30]: voxel_centre_index = t1.from_scanner(*data.position).round().astype(int)
corner_coords_voxel = [[0, -0.5, -0.5],

[0, 0.5, -0.5],
[0, 0.5, 0.5],
[0, -0.5, 0.5],
[0, -0.5, -0.5]]

corner_coords = np.array([t1.from_scanner(*data.to_scanner(*coord)) for coord in corner_
→˓coords_voxel])

[31]: plt.imshow(t1[voxel_centre_index[2]], cmap=plt.cm.gray)
plt.plot(corner_coords[:, 0], corner_coords[:, 1], 'yellow')
plt.xlim([0, t1.shape[2] - 1])
plt.ylim([t1.shape[1] - 1, 0])

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[31]: (255, 0)
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CHAPTER

FOUR

API REFERENCE

4.1 Suspect API Reference

suspect.adjust_frequency(data, frequency_shift)
Adjust the centre frequency of an MRSBase object.

Parameters
frequency_shift (float) – The amount to shift the frequency, in Hertz.

Returns
out – Frequency adjusted FID

Return type
MRSData

suspect.adjust_phase(data, zero_phase, first_phase=0, fixed_frequency=0)
Adjust the phase of an MRSBase object

Parameters

• data (MRSSpectrum) – The MRSSpectrum object to be phased

• zero_phase (scalar) – The change to the zero order phase, in radians

• first_phase (scalar, optional) – The change to the first order phase, in radians per
Hz

• fixed_frequency (scalar, optional) – The frequency, in Hz, which is unchanged by
the first order phase shift

Returns
out – A new MRSSpectrum object with adjusted phase.

Return type
MRSSpectrum
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4.2 MRSData Reference

class suspect.MRSData(input_array, dt, f0, te=30, tr=- 1, ppm0=4.7, voxel_dimensions=(10, 10, 10),
transform=None, metadata=None)

MRS data in the time domain.

adjust_frequency(frequency_shift)
Adjust the centre frequency of the signal.

Refer to suspect.adjust_frequency for full documentation.

Parameters
frequency_shift (float) – The amount to shift the frequency, in Hertz.

Returns
out – Frequency adjusted FID

Return type
MRSData

See also:

suspect.adjust_frequency
equivalent function

adjust_phase(zero_phase, first_phase=0.0, fixed_frequency=0.0)
Adjust the phases of the signal.

Refer to suspect.adjust_phase for full documentation.

Parameters

• zero_phase (float) – The zero order phase shift in radians

• first_phase (float) – The first order phase shift in radians per Hertz

• fixed_frequency (float) – The frequency at which the first order phase shift is zero

Returns
out – Phase adjusted FID

Return type
MRSData

See also:

suspect.adjust_phase
equivalent function

fid()

Returns itself. This is useful when you have either a spectrum or an FID, but want an FID

Returns
The called MRSData object

Return type
MRSData
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spectrum()

Returns
The Fourier-transformed and shifted data, represented as a spectrum

Return type
MRSSpectrum

4.3 Frequency Correction API Reference

suspect.processing.frequency_correction.correct_frequency_and_phase(data, target, method='sr',
axis=- 1, **kwargs)

Interface to frequency and phase correction algorithms, but returning the corrected data rather than the calculated
shifts. Can be applied to multi-dimensional data to align e.g. a sequence of spectra at once.

Parameters

• data (MRSBase) – The data to be corrected.

• target (MRSBase) – The reference spectrum to which data will be aligned.

• method (str, optional) – The correction method to be used. Should be one of:

– ’sr’ Time-domain Spectral Registration - see spectral_registration()

– ’rats’ RATS (Robust Alignment to a Target Spectrum) - see rats()

– ’rwa’ Residual Water Alignment - see residual_water_alignment()

– custom A callable object, see below

• axis (int or None, optional) – The axis defining the spectral dimension.

• kwargs – Arguments to be passed through to the method function.

Returns
The data with corrected frequency and phase.

Return type
MRSBase

Notes

Custom Frequency/Phase Corrections

If you have an alternative method for calculating frequency and phase shifts then you can simply pass a callable
to the method parameter.

The callable is called as method(moving_data, target_data, **kwargs) where kwargs``corresponds to
any other parameters that may be passed in such as `initial_guess. The method shall return a 2-tuple of floats
containing the frequency shift in Hertz and the phase shift in radians between the first passed data and the second.
Note that it is the measured frequency and phase shifts that should be returned, they will be negated by this
function to correct the spectrum to the target.

suspect.processing.frequency_correction.rats(data, target, initial_guess=(0.0, 0.0),
frequency_range=None, baseline_order=2, **kwargs)

Uses the RATS (Robust Alignment to a Target Spectrum)1 to calculate the frequency and phase shifts between
1 Wilson, M. (2018). Robust retrospective frequency and phase correction for single-voxel MR spectroscopy. Magnetic Resonance in Medicine,

81(5), 2878–2886. http://doi.org/10.1002/mrm.27605
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the input data and a reference spectrum. RATS operates in the frequency domain and the frequencies used to
align the spectra can be specified to exclude regions where the spectra differ.

Parameters

• data (MRSData) – The data to be aligned to the target

• target (MRSData) – The target data to which the moving data will be aligned

• initial_guess (tuple) – A 2-tuple of frequency and phase shifts at which the optimisation
routine will start searching. See below for more information.

• frequency_range (tuple, slice or ndarray) – The frequency range can be specified
in multiple different ways: a 2-tuple containing low and high frequency cut-offs in Hertz for
the comparison, as a slice object into the spectrum (for use with the slice_ppm() function, or
as an array of weights to apply to the spectrum.

• baseline_order (int) – The order of the polynomial baseline.

Returns

• frequency_shift (float) – The estimated frequency shift in Hz.

• phase_shift (float) – The estimated phase shift in radians.

Notes

Experimentally, I have found the RATS method to sometimes get stuck in local minima where the frequency shift
is larger than about 6Hz. Although this can be addressed via the initial_guess parameter, when batch processing
a sequence of spectra experiencing substantial drift, there is no single good value of initial_guess. In order to
address this issue, this function begins by using a coarse grid based search to evaluate frequencies every 2Hz from
20Hz above the initial_guess frequency to 20Hz below. It then picks from those the frequency which gives best
alignment with the target data as a starting point for the optimisation search. So far this has been very effective,
but in case of discovering any problems, please raise an issue at http://github.com/openmrslab/suspect.

References

suspect.processing.frequency_correction.residual_water_alignment(data)

Parameters
data –

suspect.processing.frequency_correction.spectral_registration(data, target, initial_guess=(0.0,
0.0), frequency_range=None,
**kwargs)

Performs the spectral registration method2 to calculate the frequency and phase shifts between the input data and
the reference spectrum target. The frequency range over which the two spectra are compared can be specified to
exclude regions where the spectra differ.

Parameters

• data (MRSData) –

• target (MRSData) –

• initial_guess (tuple) –
2 Near, J., Edden, R., Evans, C. J., Paquin, R., Harris, A., & Jezzard, P. (2014). Frequency and phase drift correction of magnetic resonance

spectroscopy data by spectral registration in the time domain. Magnetic Resonance in Medicine, 73(1), 44–50. http://doi.org/10.1002/mrm.25094
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• frequency_range (tuple, slice or ndarray) – The frequency range can be specified
in multiple different ways: a 2-tuple containing low and high frequency cut-offs in Hertz for
the comparison, as a slice object into the spectrum (for use with the slice_ppm() function, or
as an array of weights to apply to the spectrum.

Returns

• frequency_shift (float) – The estimated frequency shift in Hz.

• phase_shift (float) – The estimated phase shift in radians.

References

4.4 suspect.fitting API Reference

suspect.fitting.attenuation_scaling_factor(t1, t2, te, tr)
Calculates the expected attenuation in an MRS signal arising due to T1 and T2 effects, according to the equation:
e−

𝑇𝐸
𝑇2 (1 − e−

𝑇𝑅
𝑇1 )

Parameters

• t1 – The T1 of the tissue

• t2 – The T2 of the tissue

• te – The echo time of the sequence

• tr – The repetition time of the sequence

Returns
The attenuation factor in the observed signal expected due to T1 and T2 effects

Return type
float

Notes

This function uses the simplified form of the equation, assuming that TE is much shorter than T1 and so the
sequence behaves roughly as a 90 pulse followed by a readout, any refocussing pulses do not substantially change
the longitudinal magnetisation. If this is not the case then the details of the sequence will be important and a
more precise form of this calculation will be required.

suspect.fitting.molar_concentration_factor(f_wm, f_gm, f_csf, te, tr, tissue_params=None)
Calculate the scaling factor necessary to obtain molar metabolite concentrations from a ratio of metabolite to
water peak amplitude.

Parameters

• f_wm (float) – The fraction of the voxel containing white matter

• f_gm (float) – The fraction of the voxel containing grey matter

• f_csf (float) – The fraction of the voxel containing CSF

• te (float) – The echo time of the sequence

• tr (float) – The repetition time of the sequence

• tissue_params (dict, optional) – User supplied values for tissue MR properties in-
cluding T1 and T2
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Returns
The scaling factor to convert metabolite to water ratios to molar concentrations.

Return type
float

Notes

The calculation used here follows the form derived in1.

There are various parameters required for these calculations which can vary, for example with field strength or
other conditions. Default values are provided in Suspect (tissue water concentrations are drawn from Gasparovic
2006, relaxation times from Gussew 2012), but they can be overridden by passing in alternative values in the
tissue_parameters argument. The relevant parameters are:

Key Description Default Value
beta_wm the water density of white matter 0.65
beta_gm the water density of grey matter 0.78
beta_csf the water density of CSF 0.97
h2o_t1_wm the T1 of water in white matter 1080ms
h2o_t1_gm the T1 of water in grey matter 1820ms
h2o_t1_csf the T1 of water in CSF 4160ms
h2o_t2_wm the T2 of water in white matter 70ms
h2o_t2_gm the T2 of water in grey matter 100ms
h2o_t2_csf the T2 of water in CSF 500ms
met_t1 the T1 of metabolites in brain tissue 1400ms
met_t2 the T2 of metabolites in brain tissue 200ms

References

suspect.fitting.tarquin.process(data, wref=None, aq_factor=None, options={})
Runs the Tarquin basis set fitting program to determine metabolite concentrations.

Parameters

• data (MRSData) – The water suppressed FID data to be fitted.

• wref (MRSData) – Optional water reference file for concentration scaling.

• aq_factor (float) – Absolute quantification factor.

• options (dict) – Set of Tarquin parameters to override.

Returns
Output from running Tarquin on the data

Return type
dict

class suspect.fitting.singlet.GaussianPeak(name, amplitude=1, frequency=0, phase='0', fwhm=20)
Class to represent a Gaussian peak for fitting.

The Gaussian peak is parameterised by 4 values: amplitude, frequency, phase, and FWHM (full width at half
maximum).

1 Near, J., Harris, A. D., Juchem, C., Kreis, R., Marjańska, M., Öz, G., et al. (2020). Preprocessing, analysis and quantification in single-voxel
magnetic resonance spectroscopy: experts’ consensus recommendations. NMR in Biomedicine, 29, 323–23. http://doi.org/10.1002/nbm.4257
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Each parameter can be specified in three different ways: 1. Passing a numeric value sets the initial guess for that
parameter 2. Passing a string of a number fixes that parameter to that value 3. Passing a dictionary allows setting
any of the constraints supported

by the underlying LMFit parameter: value, min, max, vary, and expr

By default the phase of the peak will be fixed at 0 and the amplitude and FWHM will be constrained to be bigger
than 0 and 1Hz respectively.

Parameters

• name – The name of the peak

• amplitude – The amplitude (area) of the peak

• frequency – The frequency of the peak in Hertz

• phase – The phase of the peak in radians

• fwhm – The full width at half maximum of the peak in Hertz

class suspect.fitting.singlet.Model(peak_models, phase0=0, phase1='0')
A model of an MRS FID signal which can be fitted to data.

This model is created by passing a set of individual peak models, to which it then appends a phase model. By
default the first order phase is constrained to be 0.

Parameters

• peak_models – The descriptions of the peaks making up the model.

• phase0 – The estimated zero order phase in radians.

• phase1 – The estimated first order phase in radians per Hz.

fit(data, baseline_points=4)
Perform a fit of the model to an FID.

Parameters

• data – The time domain data to be fitted.

• baseline_points – The first baseline_points of the FID will be ignored in the fit.

Return type
ModelResult

classmethod from_dict(model_dict)
Create a model from a dict.

Parameters
model_dict – dict describing the model.

Returns
The specified model ready for fitting.

Return type
Model
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4.5 Changelog

Please see the changelog.
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